Publications

(2024). Proving linear mode connectivity of neural networks via optimal transport. AISTATS 2024.

(2024). PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python. Mathematical Programming Computation (MPC).

(2023). On Fundamental Proof Structures in First-Order Optimization. CDC 2023.

(2023). Gradient descent is optimal under lower restricted secant inequality and upper error bound. NeurIPS 2023.

(2023). Counter-examples in first-order optimization: a constructive approach. L-CSS.

(2023). Provable non-accelerations of the heavy-ball method. Opt24 at NeurIPS (oral).

(2022). Super-acceleration with cyclical step-sizes. AISTATS 2022.

(2022). Quadratic minimization: from conjugate gradient to an adaptive Heavy-ball method with Polyak step-sizes. Open Journal of Mathematical Optimization (OJMO).

(2022). Optimal first-order methods for convex functions with a quadratic upper bound.

(2021). A Study of Condition Numbers for First-Order Optimization. AISTATS 2021.

(2019). Gradient-based sample selection for online continual learning. NIPS 2019.

(2018). Robust Detection of Covariate-Treatment Interactions in Clinical Trials. ISCBASC 2018.